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     Abstract                                                                                           

     We study the electronic and structure properties of zinc-
sulphide (ZnS) under high pressure, using large unit cell method. 
We employ intermediate neglect of differential overlap calculation, 
with appropriate corrections to the band gap and zero point energy 
to the cohesive energy. The results are in reasonable agreement 
with available experimental data. The effect of pressure on zinc-
sulphide causes the following effect; an increase of band gap,
valence bandwidth and the cohesive energy, and a decrease of 
the conduction bandwidth. This model is predicted a decrease of 
the electronic occupation probability for the s and p orbital of sulfur 
with an increase of this probability for the s-orbital of zinc with 
increase of pressure.                                                                                                

Keywords : ZnS, high pressure, band structure, semiempirical 
methods, LUC-INDO.                                                      

                              
تأثیر الضغط على التركیب ألحزمي لكبریتید الخارصین باستعمال حسابات الإھمال المتوسط 

  للتداخل التفاضلي لخلیة الوحدة الكبیرة
  

  الخلاصة
  

تحت )  ZnS(تم في ھذا البحث دراسة الخواص الالكترونیة والتركیبیة لكبریتید الخارصین     
حیث تم استخدام حسابات الإھمال . لوحدة الكبیرةتأثیر الضغوط العالیة باستعمال طریقة خلیة ا

المتوسط للتداخل التفاضلي مع  إجراء تصحیحات مناسبة لفجوة الطاقة، وطاقة نقطة الصفر إلى 
النتائج التي تم الحصول علیھا كانت متطابقة إلى حد مقبول مع النتائج العملیة . طاقة الترابط

زیادة كل من فجوه : الدراسة أدى إلى التأثیرات التالیة تأثیر الضغط على البلورة قید. المتوفرة 
إن ھذا النموذج . الطاقة وعرض حزمة التكافؤ وطاقة الترابط، ونقصان عرض حزمة التوصیل

للكبریت مع زیادة ھذه   pو  sیتوقع نقصان احتمالیة وجود الالكترونات في المدارین 
  .المسلطفي الخارصین بزیادة الضغط   sالاحتمالیة للمدار
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1  Introduction

     Calculation of the bulk ground state properties, such as lattice 
constants, bond lengths, bulk modulus, cohesive energy, and 
atomic position, play an important role in the physics of condensed 
matter [1-3]. Bulk calculations help us to understand, characterize, 
and predict mechanical properties of materials in surroundings, 
under extreme conditions, as in geological formations and 
settings, and for industrial applications. Crystalline materials come 
in many different structure and in contrast to isotropic materials, 
the description of the ground state of crystalline may in general 
need multiple lattice parameters and an atomic basis. 
     In recent years, several theoretical and experimental studies 
have focused on the electronic properties of ZnS semiconductor 
largely motivated by the potential applications of these materials in 
opto-electronic devices, particularly blue-green lasers [4], and in 
technological applications mainly in the field of optical devices.
    In this work we have studied the effect of pressure on the some 
properties of zinc - sulphide (ZnS) in the zinc-blende phase using 
the self-consistent LUC-INDO method in the linear combination of 
atomic orbitals approximation [5,6]. This method, which had been 
already successfully employed for a long time in molecular theory 
has gained wide acceptance in calculations of the electronic 
structures of crystals.

2   Structural Properties and Phase Transition of ZnS 

    Zinc sulphide crystallizes under normal transition with the zinc-
blende (ZB) structure [7,8], in the fourfold-coordinated which 
corresponds to the space group (Ām). As the pressure is 
applied to ZnS it transforms into rock-salt phase (NaCl) with six-
fold coordinated Smith and Martin [9] reported a transition 
pressure of 11.7 GPa, although later studies have placed it at a 
somewhat higher pressure 14.5 GPa according to Nelmes and 
McMahon [10] and 15.5 GPa according to Uchino et al [11]. In 
contrast to zinc-blende structure, the NaCl phase is found to an 
indirect-gap semiconductor [12.13], which has been confirmed by 
a first - principles calculations [14]. At pressure about 65 GPa the 
NaCl phase has been reported to undergo a Cmcm–like distortion 
with no significant change in volume [10,15]. The high pressure 
behavior of ZnS has been the subject of several recent theoretical
[8, 16] and experimental [15].
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3   Computational Details

  The basic idea of the large unit cell is in computing the electronic 
structure of the unit cell extended in a special manner at k=0 in the 
reduced Brillouin zone. This equivalent to a band structure 
calculation at those k-point; which transform to Brillouin zone 
center on extending the unit cell [17]. Using the LCAO, the crystal 
wavefunction in the LUC-INDO formalism is written in the following 
form: 
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Where Cpa are the orbital expansion coefficients and the Ru is the 
lattice translation vector. The atomic orbital used for the LCAO 
procedure form the basis set of the calculation. We expand the 
wavefunction in a set of Slater-type orbitals (STO) [18]. This is 
very efficient basis set, these orbitals have the radial form:
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Where  the orbital exponent. The expectation value of the 

electronic energy is:

 /H                                                       (3)

The Hamiltonian for a microcrystal consisting of N electrons may 

be written as 
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Where ZA is the core charge, RAB is the distance between the 
atoms A and B, and the summation is over all nuclei. But the 
Roothaan-Hall equations can be obtained [19]:

0)(  pqkpqk
p

apqk CSF                                                               (5)

Fpqk represents the Fock matrix elements and Spq is the overlap 
integral for atomic function q andP, and written as :
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The Fock matrix elements may be represent as the sum of the one-
and two- electron components:
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v
rsP is the density element with the form:
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In the equation (5) if k=0  then

0)( 000  pqpq
p

apq CSF                                 (9)

    In the INDO approximation one can utilize that many of the 
integrals are very small or zero and begin to neglect systematically 
some of the matrix elements and many approximations can be 
made. The Fock matrix elements in their final forms in the LUC-
INDO formalism are used  in this work [5]:
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For p and q on different atomic centers, and
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    For p and q on the same atomic center, ��� is the bonding 
parameter and �AB is the average electrostatic repulsion between 
any electron on atom A and any electron on atom B, and Upp is 
the local core matrix element and can be written as:

AAApppp ZAIU )
2

1
()(

2

1
                                                      (13)

Where Ip and AP are the ionization potential and electron affinity,

respectively, f(x) is the modulating function and is given by [20]
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For the 8 atom LUC x is given by

a

R
x AB
                                                                                    (15)     

RAB is the distance between the atom A  at the central lattice o and 

the atom B at the v lattice.

4   The Results and Discussion

4.1 Choice of Parameters

   The empirical parameters in the LUC–INDO method are the 
orbital exponent ζ, the bonding parameter β, the electronegativity 
of  s-orbital (Es ), and the electronegativity of p-orbital (Ep). The 
value of the orbital exponent determines the charge distribution of 
electrons around the nucleus or in the solid. These parameters are 
varied firstly to give nearly the exact value of the equilibrium lattice 
constant, cohesive energy, indirect band gap and valence band 
widths. The optimum values of these parameters used for ZnS in 
the present work are listed in Table 1.                                                

Table 1. Parameters sets of ZnS used in this work.
  

   The results of cohesive energies as a function of lattice constant
are obtained by the above method at 0 k and zero pressure. The 
equilibrium lattice constant obtained from LUC-INDO calculation 
for ZnS is listed in Table 2 in comparison with experimental and 
other results. The lattice constant for ZnS presented here is 
slightly smaller than experimental calculations, the difference 

S  Zn  Parameter  

2.1122.0038ζ ( a.u)-1  

-20.23-17.17 (eV)

19.4315.57Es (eV)

8.266.97Ep (eV)
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between the experimental data and our  results are very small, i.e., 
only 0.03 Å. Figure 1 is fitted to the Murnaghan's equation of state 
[21], from which we obtain the equilibrium lattice parameter a0, the 
bulk modulus B, and its derivative 

0
B .

Figure 1. Cohesive energy as a function of lattice constant for 
ZnS.

   Based on the calculations, we obtained the cohesive energy 
value of the present work is in good agreement with experimental 
results (as shown in Table 2). We added the free atom sp shell 
energy (Efree), for the cohesive energy to correct its value. In this 
work Efree =151.86 eV, and this value is taken from  ionization 
potential of ZnS, On the other hand, the zero-point vibration 
energy (E0) is neglected because its very small = 0.085 eV. The 
calculated direct bandgap is listed in Table 2 and the differences 
between LUC-INDO and experimental result of direct bandgap is 
relatively small, where the bandgap values is higher than 
experimental values this is, mainly, a consequence of two 
approximations made in this calculation. First, the core structure 
was ignored, through some compensation results from using 
semiempirical parameters . Second, using minimal basis set 
atomic orbitals (without considering any excited levels). The 
calculated bulk modulus of ZnS is 74 GPa, which is in good 
agreement with experimental value of 76.9 GPa [22], and 79.5
GPa [23]. Hybridization state show an increasing s-state 
occupation with the decreasing atomic number of the compound 
where the occupation of s of sulfur is larger than of that for zinc.
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The eigenvalues of the high symmetry point are shown in Table 3.
                                                                                               

Table 2. Electronic and structural properties calculated within the 
large unit cell at ground state (zero pressure and 0 temperature).   

                                                       

Property  Present 
work Experimental Others  

Lattice constant (Å)       5.381 5.411 [24] 5.30 [25], 5.35 [26]

Cohesive energy (eV)              9.08 8.97 [27] 7.4 [28], 8.33 [29]  

Conduction bandwidth (eV) 1.89 ..... .....

Valence bandwidth (eV) 12.45 ….. …..

Band gap (eV)                  
4.242 3.82 [30] 3.24 [31], 3.98 [32]

Hybridization state  of   S  s1.86p4.53 s2p4 …..

Hybridization state of  Zn s1.65 s2 …..  

Table 3. Eigenvalue of ZnS at high symmetry point, compared 
with other result.

Eigenvalue (eV)  

Symmetry point  
Reference (25)Present  

-13.51  -12.45Г1v  

0  0  Г15v  

2.154.242  Г1c

6.49  7.32Γ15c  

- 12.05- 11.12X1v  

- 4.87- 4.51X5v

3.184.34X1c  

4.026.23  X4c  
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4.2  The Effect of Pressure on the Properties

    The effect of pressure on the electronic structure and other 
properties can be calculated from the present theory and
computational procedure. By the use of our calculated values of  
the bulk modulus B, and its derivative volume change (V) with 
applied pressure was calculated using the following equation 
[33,34]:                                                                                                 

                                                                                                        
                                                             

       )16(   
  
  

      Where P is pressure, and V0 is the equilibrium volume at zero 
pressure. We applied  a pressure up to 14 GPa, because this 
structure transforms to another phase, rock salt (NaCl), when 
pressure exceeds nearly 14 GPa [10]. The calculated lattice 
constant as a function of pressure is shown in Fig.2.                                                                   

                                                                     
                              
                         
                              
                              

                
  
  
  
  
  
  

  

Figure 2. Lattice constant as a function of pressure using LUC –
INDO model.                                                

                     
The pressure dependence of  the cohesive energy is illustrated in 
Fig. 3. It is shown that the absolute value of the cohesive energy 
decreases as the pressure increases.                                                                        
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Figure 3. Cohesive energy versus pressure for ZnS.
  

   The pressure derivative of the high symmetry points (Г1v , Г15v ,  
X1v , X5v , X1c, X5c , Г15c , and Г1c) is shown in table 4. From this table
one can see that the eigenvalues at conduction band (X5c, Г15c , Г1c, 
X1c) are increase with pressure, whereas eigenvalues at valence 
band (X5v , X1v , Г1v ) decrease with pressure, However, the 
decrease of  X5v , X1v , and Г1v with pressure is small.

Table 4 .The pressure derivative of the high symmetry points, 
where the minus sign mean that the high symmetry point 
decrease with pressure effect. 

The pressure derivative (meV/GPa )  Symmetry point  

18.6 -  Г1v  

51.22Г1c

27.7Γ15c  

-21.3X1v  

15.2 -  X5v

43.04  X1c  

31.2X4c  
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-9.075
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    The pressure derivative of the direct bandgap is shown in figure 
4, from this figure we can see that the direct band increase with 
the increase of pressure. The predicted effect of pressure on the 
valence bandwidth, and conduction bandwidth is illustrated in 
Figures 5 and 6, respectively. The valence bandwidth increase 
with the increase of pressure, while the conduction bandwidth 
decreases with the increase of pressure.                                                                            

                                                                            
      

  

Figure 4 . The effect of pressure on the bandgap.

Figure 5. Pressure dependence of the valence bandwidth of ZnS.
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Figure 6.  Predicted effect of pressure on the conduction 
bandwidth.

   We found that the s and p state occupation for S decreases with 
the increase of pressure, whereas the s states occupation for Zn 
increases in this case. The occupation of s and p states for S and 
Zn with pressure is shown in Fig.7. The increase of pressure 
causes an increase of the probability of electron transition from 
sulfur to zinc. This is known and leads to a phase transition due to 
the change of electronic distribution such as the s-d transition in 
alkali metals [35].

                                                                                             
Figure 7. The effect of pressure on the hybridization of (a) s- state 

and (b) p- state.                   
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Conclusions
  
  In conclusion, we applied large unit cell within the intermediate

neglect of differential overlap method to studies the structure and 
electronic properties of ZnS semiconductor under the effect of 
pressure. The properties obtained are in very good agreement 
with the existing experimental data and with GDSP/DFT except 
the direct bandgap which is greater than the experimental data, 
this difference is due to the neglect to the core states and to the 
approximations incorporated with the computational formalism. 
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