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Abstract

We study the electronic and structure properties of zinc-
sulphide (ZnS) under high pressure, using large unit cell method.
We employ intermediate neglect of differential overlap calculation,
with appropriate corrections to the band gap and zero point energy
to the cohesive energy. The results are in reasonable agreement
with available experimental data. The effect of pressure on zinc-
sulphide causes the following effect; an increase of band gap,
valence bandwidth and the cohesive energy, and a decrease of
the conduction bandwidth. This model is predicted a decrease of
the electronic occupation probability for the s and p orbital of sulfur
with an increase of this probability for the s-orbital of zinc with
increase of pressure.

Keywords : ZnS, high pressure, band structure, semiempirical
methods, LUC-INDO.
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1 Introduction

Calculation of the bulk ground state properties, such as lattice
constants, bond lengths, bulk modulus, cohesive energy, and
atomic position, play an important role in the physics of condensed
matter [1-3]. Bulk calculations help us to understand, characterize,
and predict mechanical properties of materials in surroundings,
under extreme conditions, as in geological formations and
settings, and for industrial applications. Crystalline materials come
in many different structure and in contrast to isotropic materials,
the description of the ground state of crystalline may in general
need multiple lattice parameters and an atomic basis.

In recent years, several theoretical and experimental studies
have focused on the electronic properties of ZnS semiconductor
largely motivated by the potential applications of these materials in
opto-electronic devices, particularly blue-green lasers [4], and in
technological applications mainly in the field of optical devices.

In this work we have studied the effect of pressure on the some
properties of zinc - sulphide (ZnS) in the zinc-blende phase using
the self-consistent LUC-INDO method in the linear combination of
atomic orbitals approximation [5,6]. This method, which had been
already successfully employed for a long time in molecular theory
has gained wide acceptance in calculations of the electronic
structures of crystals.

2 Structural Properties and Phase Transition of ZnS

Zinc sulphide crystallizes under normal transition with the zinc-
blende (ZB) structure [7,8], in the fourfold-coordinated which
corresponds to the space group (CA3m). As the pressure is
applied to ZnS it transforms into rock-salt phase (NaCl) with six-
fold coordinated Smith and Martin [9] reported a transition
pressure of 11.7 GPa, although later studies have placed it at a
somewhat higher pressure 14.5 GPa according to Nelmes and
McMahon [10] and 15.5 GPa according to Uchino et al [11]. In
contrast to zinc-blende structure, the NaCl phase is found to an
indirect-gap semiconductor [12.13], which has been confirmed by
a first - principles calculations [14]. At pressure about 65 GPa the
NaCl phase has been reported to undergo a Cmcm-like distortion
with no significant change in volume [10,15]. The high pressure
behavior of ZnS has been the subject of several recent theoretical
[8, 16] and experimental [15].



3 Computational Details

The basic idea of the large unit cell is in computing the electronic
structure of the unit cell extended in a special manner at k=0 in the
reduced Brillouin zone. This equivalent to a band structure
calculation at those k-point; which transform to Brillouin zone
center on extending the unit cell [17]. Using the LCAO, the crystal
wavefunction in the LUC-INDO formalism is written in the following
form:

cellsbasis

'//a(kar)= Z Zexp(ikRu)Cpa(kMp(r_Ru) (1)

Where C,, are the orbital expansion coefficients and the R, is the
lattice translation vector. The atomic orbital used for the LCAO
procedure form the basis set of the calculation. We expand the
wavefunction in a set of Slater-type orbitals (STO) [18]. This is
very efficient basis set, these orbitals have the radial form:
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Where ( the orbital exponent. The expectation value of the
electronic energy is:
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Where Z, is the core charge, Ryg is the distance between the
atoms A and B, and the summation is over all nuclei. But the
Roothaan-Hall equations can be obtained [19]:

Z(F qu_gaquk )C pgk = 0 (5)
p

Foqc represents the Fock matrix elements and S, is the overlap
integral for atomic function ¢, and ¢p, and written as :
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The Fock matrix elements may be represent as the sum of the one-
and two- electron components:
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P+ is the density element with the form:
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In the equation (5) if k=0 then

Z(F pqo_gaquo)cpqo =0 (9)
p

In the INDO approximation one can utilize that many of the
integrals are very small or zero and begin to neglect systematically
some of the matrix elements and many approximations can be
made. The Fock matrix elements in their final forms in the LUC-
INDO formalism are used in this work [5]:
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For p and q on the same atomic center, [1, is the bonding
parameter and [,z is the average electrostatic repulsion between

any electron on atom A and any electron on atom B, and U, is
the local core matrix element and can be written as:

1 1
Upp:_E(Ip+Ap)+(ZA_E)7AA (13)

Where |, and Ap are the ionization potential and electron affinity,

respectively, f(x) is the modulating function and is given by [20]



f(x) = (X2 (14)

X

For the 8 atom LUC x is given by
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Rag is the distance between the atom A at the central lattice o and

the atom B at the v lattice.

4 The Results and Discussion

4.1 Choice of Parameters

The empirical parameters in the LUC-INDO method are the
orbital exponent ¢, the bonding parameter 3, the electronegativity
of s-orbital (Es ), and the electronegativity of p-orbital (E;). The
value of the orbital exponent determines the charge distribution of
electrons around the nucleus or in the solid. These parameters are
varied firstly to give nearly the exact value of the equilibrium lattice
constant, cohesive energy, indirect band gap and valence band
widths. The optimum values of these parameters used for ZnS in
the present work are listed in Table 1.

Table 1. Parameters sets of ZnS used in this work.

Parameter Zn S
Z(a.u)’ 2.0038 2.112
Bas (V) -17.17 -20.23

Es (eV) 15.57 19.43
E, (eV) 6.97 8.26

The results of cohesive energies as a function of lattice constant
are obtained by the above method at 0 k and zero pressure. The
equilibrium lattice constant obtained from LUC-INDO calculation
for ZnS is listed in Table 2 in comparison with experimental and
other results. The lattice constant for ZnS presented here is
slightly smaller than experimental calculations, the difference



between the experimental data and our results are very small, i.e.,
only 0.03 A. Figure 1 is fitted to the Murnaghan's equation of state
[21], from which we obtain the equilibrium lattice parameter aq, the
bulk modulus B, and its derivative B’ .
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Figure 1. Cohesive energy as a function of lattice constant for
ZnS.

Based on the calculations, we obtained the cohesive energy
value of the present work is in good agreement with experimental
results (as shown in Table 2). We added the free atom sp shell
energy (Efee), for the cohesive energy to correct its value. In this
work Eqee =151.86 €V, and this value is taken from ionization
potential of ZnS, On the other hand, the zero-point vibration
energy (Eo) is neglected because its very small = 0.085 eV. The
calculated direct bandgap is listed in Table 2 and the differences
between LUC-INDO and experimental result of direct bandgap is
relatively small, where the bandgap values is higher than
experimental values this is, mainly, a consequence of two
approximations made in this calculation. First, the core structure
was ignored, through some compensation results from using
semiempirical parameters . Second, using minimal basis set
atomic orbitals (without considering any excited levels). The
calculated bulk modulus of ZnS is 74 GPa, which is in good
agreement with experimental value of 76.9 GPa [22], and 79.5
GPa [23]. Hybridization state show an increasing s-state
occupation with the decreasing atomic number of the compound
where the occupation of s of sulfur is larger than of that for zinc.



The eigenvalues of the high symmetry point are shown in Table 3.

Table 2. Electronic and structural properties calculated within the
large unit cell at ground state (zero pressure and 0 temperature).

Present

Property work Experimental Others
Lattice constant (A) 5.381 5.411 [24] 5.30 [25], 5.35 [26]
Cohesive energy (eV) 9.08 8.97 [27] 7.4 [28], 8.33 [29]
Conduction bandwidth (eV) 18 | ... | .
Valence bandwidth (eV) 12.45
Band gap (eV) 4.242 3.82[30] 3.24 [31], 3.98 [32]
Hybridization state of S 586453 s%p*
Hybridization state of Zn g'65 s2

Table 3. Eigenvalue of ZnS at high symmetry point, compared

with other result.

Eigenvalue (eV)
Symmetry point
Present Reference (25)

Fav -12.45 -13.51
r15v 0 0
Mic 4.242 2.15
Msc 7.32 6.49
X1v -11.12 -12.05
Xsy - 4.51 -4.87
X1¢ 4.34 3.18
) O 6.23 4.02




4.2 The Effect of Pressure on the Properties

The effect of pressure on the electronic structure and other
properties can be calculated from the present theory and
computational procedure. By the use of our calculated values of
the bulk modulus B, and its derivative volume change (V) with
applied pressure was calculated using the following equation
[33,34]:

re ol ()] (16)

Where P is pressure, and V, is the equilibrium volume at zero
pressure. We applied a pressure up to 14 GPa, because this
structure transforms to another phase, rock salt (NaCl), when
pressure exceeds nearly 14 GPa [10]. The calculated lattice
constant as a function of pressure is shown in Fig.2.

Lattice parameter(A)

Pressure (GPa)

Figure 2. Lattice constant as a function of pressure using LUC —
INDO model.

The pressure dependence of the cohesive energy is illustrated in
Fig. 3. It is shown that the absolute value of the cohesive energy
decreases as the pressure increases.
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Figure 3. Cohesive energy versus pressure for ZnS.

The pressure derivative of the high symmetry points (I'y, , sy,
Xiv » Xsy, Xie, Xse , [N15¢, and 4¢) is shown in table 4. From this table
one can see that the eigenvalues at conduction band (Xsc, Nsc , N1,
Xic) are increase with pressure, whereas eigenvalues at valence
band (Xs, , X4 , 4y ) decrease with pressure, However, the
decrease of Xs, , X4y, and [y, with pressure is small.

Table 4 .The pressure derivative of the high symmetry points,
where the minus sign mean that the high symmetry point
decrease with pressure effect.

Symmetry point | The pressure derivative (meV/GPa )
I_1v -18.6
Mc 51.22
Ms5c 27.7
Xty -21.3
Xsy -15.2
Xic 43.04
Xac 31.2




The pressure derivative of the direct bandgap is shown in figure
4, from this figure we can see that the direct band increase with
the increase of pressure. The predicted effect of pressure on the
valence bandwidth, and conduction bandwidth is illustrated in
Figures 5 and 6, respectively. The valence bandwidth increase
with the increase of pressure, while the conduction bandwidth
decreases with the increase of pressure.
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Figure 4 . The effect of pressure on the bandgap.

15
14.5
14
13.5

13

Valence bandwidth (eV)

125 §

12 L 1 1
0 5 10 15

Pressure (GPa)

Figure 5. Pressure dependence of the valence bandwidth of ZnS.
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Figure 6. Predicted effect of pressure on the conduction
bandwidth.

We found that the s and p state occupation for S decreases with
the increase of pressure, whereas the s states occupation for Zn
increases in this case. The occupation of s and p states for S and
Zn with pressure is shown in Fig.7. The increase of pressure
causes an increase of the probability of electron transition from
sulfur to zinc. This is known and leads to a phase transition due to
the change of electronic distribution such as the s-d transition in
alkali metals [35].
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Figure 7. The effect of pressure on the hybridization of (a) s- state
and (b) p- state.



Conclusions

In conclusion, we applied large unit cell within the intermediate
neglect of differential overlap method to studies the structure and
electronic properties of ZnS semiconductor under the effect of
pressure. The properties obtained are in very good agreement
with the existing experimental data and with GDSP/DFT except
the direct bandgap which is greater than the experimental data,
this difference is due to the neglect to the core states and to the
approximations incorporated with the computational formalism.
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